

JZ8P1601

8位OTP微控制器

用户数据手册

版本号 V1.1 2018 年5 月

修改记录说明

版本号	修改说明	备注
V1. 1	修改脚位说明	

目录

1	产品简述	5
	1.1 特性	5
	1.2 引脚图	6
	1.3 引脚描述	7
2	中央处理器(CPU)	7
	2.1 程序存储器	7
	2.1.1 复位向量(0000H)	8
	2.1.2 中断向量(0008 H)	8
	2.1.3 查表	9
	2.2 数据存储器	9
	2.2.1 RAM (64 字节)	9
	2.2.2 寄存器定义	9
	2.2.3 寄存器位描述	10
	2.2.4 累加器(ACC)	11
	2.2.6 RREG 寄存器	12
	2.2.8 程序计数器	12
	2.2.9 堆栈	13
	2.2.10 寻址方式	13
3	复位	14
	3.1 复位方式	14
4	系统时钟	14
	4.1 概述	14
	4.2 OSCM 寄存器	14
	4.3 系统高速时钟	15
	4.3.1 内部高速 RC 振荡器	15
	4.4 系统低速时钟	15
5	系统工作模式	15
5.1	概述	15
	5.2 普通模式	17
	5.3 低速模式	17
	5.4 睡眠模式	17
	5.5 绿色模式	17
6	中断	17
	6.1 概述	17
	6.2 中断请求使能寄存器 INTEN	17
	6.3 中断请求寄存器 INTRQ	
	6.4 GIE 全局中断	18
	6.5 PUSH, POP 处理	
	6.6 INTO (IOBO) 中断	
	6.7 INT1 (IOB1) 中断	
	6.8 TC0 中断	
	6.9 TC1 中断	
		,-2

	6.10 ADC 中断	20
7	I/O □	20
	7.1 I/O 口模式	20
	7.2 I/O 上拉电阻寄存器	20
	7.3 I/O 口数据寄存器	21
	7.4 IOA 口 ADC 共用引脚	21
8	定时器	23
	8.1 看门狗定时器	23
	8.2 定时/计数器 TC0/TC1	23
	8.2.1 概述	23
	8.2.2 TC0M 模式寄存器	23
	8.2.3 TC1X8, TC0X8, TC0GN 标志	24
	8.2.4 TC0C 计数寄存器	25
	8.2.5 TC0R 自动装载寄存器	25
	8.2.6 TC0 时钟频率输出(蜂鸣器输出)	25
	8.3 定时/计数器 TC1	25
	8.4 PWM 功能	25
	8.4.1 概述	25
9	7+1 通道 ADC	26
	9.1 概述	26
	9.2 ADM 寄存器	26
	9.3 ADR 寄存器	27
	9.4 ADB 寄存器	27
	9.7 AD 转换时间	28
10	指令表	29
	10.1 指令表	29
11	配置字信息	29
12	电性参数	30
	12.1 极限参数	30
	12.2 直流特性	30
	12.3 直流特性曲线	31

1 产品简述

JZ8P1601 是一颗采用高速低功耗 CMOS 工艺设计开发的 8 位高性能精简指令单片机,内部有 $1K\times16$ 位一次性可编程 ROM (OTP-ROM), 64×8 位的数据存储器 (RAM),三个双向 I/O 口,两个 8 位 Timer 定时器/计数器,7+1 路 12BIT ADC ,2 路 PWM 输出,支持多种系统工作模式和多个中断源。

1.1 特性

- CPU 特性
 - 高性能精简指令
 - 1K×16 位的 OTP 程序存储器
 - 64×8 位的数据存储器
 - 4级堆栈缓存器
 - 2T/4T/8T/16T 时钟模式
 - 支持查表指令
- I/O □
 - 三个双向 I/O 口: IOA, IOB, IOC
 - 最多 13 个双向 I/O 口和 1 个输入口
 - 高灌/高拉电流能力,可直接驱动 LED
 - 可编程弱上拉口
 - IOB 口唤醒
- 两个 Timer 定时器/计数器
 - Timer0/Timer1: 具有自动装载功能的 定时/计数器,支持 PWM 和 BUZZER 输出
- 系统时钟
 - 内部高速 RC 震荡器: 16M
 - 内部低速 RC 震荡器: 32K (5V)
 - 外部高速 RC 震荡器: 20M
 - 外部高速晶体震荡器: 12/4M
 - 外部低速晶体振荡器: 32K

■ 系统工作模式

- 普通模式: 高低速时钟同时工作, CPU 工作于高速时钟
- 低速模式: CPU 工作于低速时钟
- 休眠模式: CPU 及高低速时钟都 停止工作
- 绿色模式: CPU 停止工作, TC0 的周期唤醒

■ 中断源

- 定时器中断: Timer0, TIMER1
- INT0, INT1 外部中断
- ADC中断
- 7+1 通路 12BIT ADC
 - 7 路外部 ADC 输入
 - 一个内部电池检测
 - 内部 ADC 参考电压

■ 特殊功能

- 可编程代码保护
- 多级 LVD低压检测

■ 封装形式

• 16/14/8Pin DIP/SOP

1.2 引脚图

VDD	1	16	vss
IOB3/XIN	2	15	IOA4/AIN4/PSCK
IOB2/XOUT	3	14	IOA3/AIN3
IOB4/RSTB/VPP	4	13	IOA2/AIN2
IOC3/BZ1/PWM1	5	12	IOA1/AIN1/PSDA
IOC4/BZ0/PWM0	6	11	IOA0/AIN0/VREFH/PCK
IOB1/INT1/T1CKI	7	10	IOB0/INT0/T0CKI
IOA6/AIN6	8	9	IOA7/AIN7
VDD	1	14	vss
IOB3/XIN	2	13	IOA4/AIN4/PSCK
IOB2/XOUT	3	12	IOA3/AIN3
IOB4/RSTB/VPP	4	11	IOA2/AIN2
IOC3/BZ1/PWM1	5	10	IOA1/AIN1/PSDA
IOC4/BZ0/PWM0	6	9	IOA0/AIN0/VREFH/PCK
IOB1/INT1/T1CKI	7	8	IOB0/INT0/T0CKI
***]
-			Ъ
VDD	1	14	∐vss
IOB2/XOUT	2	13	IOA4/AIN4/PSCK
IOB4/RSTB/VPP	3	12	IOA1/AIN1/PSDA
IOC3/BZ1/PWM1	4	11	IOA0/AIN0/VREFH/PCK

1.3 引脚描述

名称	类型	说明
VDD, VSS	P	电源输入端
IOA[7:6]	I/O	输入/输出IO,CMOS,上拉电阻
AIN[7:6]	AI	AD 模拟通道输入口
IOA4	I/O	输入/输出IO, CMOS, 上拉电阻
AIN4	AI	AD 模拟通道输入口 编程串行时 钟输入
IOA[3:3]	I/O	输入/输出IO, CMOS, 上拉电阻
AIN[3:2]	AI	AD 模拟通道输入口
IOA1	I/O	输入/输出IO, CMOS, 上拉电阻
AIN1	AI	AD 模拟通道输入口 编程串行数
Allvi	IO	据
IOA0	I/O	输入/输出IO,CMOS,上拉电阻
AIN0	ΑI	AD 模拟通道输入口
VREFH	ΑI	AD 外部参考输入 编程模式内部
VKEFH	О	振荡器时钟分频输出
IOB0	I/O	输入/输出IO,SMT,上拉电阻,唤醒 外
INT0	I	部中断输入口,SMT
T0CKI	I	Timer0 外部时钟输入
IOB1	I/O	输入/输出IO,SMT,上拉电阻,唤醒 外
INT1	I	部中断输入口,SMT
T1CKI	I	Timerl 外部时钟输入
IOB2	I/O	输入/输出IO,SMT,上拉电阻,唤醒 振
XOUT	I	荡器输出管脚
IOB3	I/O	输入/输出引脚,SMT,上拉电阻,唤醒 振
XIN	I	荡器输入管脚
IOB4	I	输入引脚,SMT,唤醒 外部
RST	I	复位输入,SMT,唤醒 编程
VPP	P	高压输入
IOC[4:3]	I/O	双向输入/输出引脚,SMT,上拉电阻
BZ[1:0]	0	Buzzer 输出引脚
PWM[1:0]	0	PWM 输出引脚

注: I = 输入 O = 输出 I/O = 输入/ 输出 P = 电源

2 中央处理器 (CPU)

2.1 程序存储器

0000Н	复位向量	
0001H \$ 0007H	通用程序区	
0008H	中断向量	
0009H 03FFH	通用程序区	

2.1.1 复位向量(0000H)

JZ8P1601 有以下四种复位方式:

- (1) 上电复位
- (2) 看门狗复位
- (3) 外部复位
- (4) 欠压复位

发生上述任一种复位后,程序将从 0000H 处重新开始执行,系统寄存器也都将恢复为初始默认值。 根据 STATUS 寄存器中 NTO 和 NPD 标志位的内容可以判断系统复位方式。

例: 定义复位向量。

ORG 0 ;

GOTO MAIN ; 跳转至用户程序开始

;用户程序开始 MAIN: ...

GOTO MAIN ;用户主程序循环

2.1.2 中断向量(0008 H)

JZ8P1601 中断向量地址为 00008H。一旦有中断响应,程序计数器 PC 的当前值就会存入堆栈缓存 器并跳转到 0008H 处开始执行中断服务程序。

中断服务程序:

ORG 0000H

GOTO START ; 跳转到程序开始

ORG 0008H

GOTO IRQSUB; 发生中断后,跳转到中断子程序

START:

GOTO START ; 主程序循环

IRQSUB:

PUSH ; 进入中断子程序后, 先保存现场

POP : 退出中断子程序前,恢复现场

RETURN **END**

晶哲科技 改变从芯开始

第8页共33页

2.1.3 查表

寄存器 YREG 指向 ROM 区数据地址的高字节(bit8~bit15),寄存器 ZREG 指向 ROM 区数据地址的 低 字节(bit0~bit7)。执行完 RDT 指令后,所查找数据低字节内容被存入 ACC 中,而数据高字节内容被存入 RREG 寄存器。

例程: 查找 ROM 地址为"TABLE"的值

MOVIR high(TABLE),YREG ; 设置TABLE 地址高字节。
MOVIR low(TABLE),ZREG ; 设置TABLE 地址低字节。

RDT ; 查表, RREG = 12H, ACC=34H。

• • •

TABLE DW 1234H ; 定义数据表 (16 位)数据。

DW 5789H DW ABCDH

2.2 数据存储器

2.2.1 RAM (64 字节)

地址	RAM
000Н	
03FH	
080Н	
0FFH	

2.2.2 寄存器定义

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
8			RREG	ZREG	YREG		STATUS									
9																
A															ANSEL	VREFH
В		ADM	ADB	ADR					OEB							PEDGE
C					OEA	OEC			INTRQ	INTEN	OSCM		WDTR	TC0R	PCL	PCH
D	IOB				IOA	IOC			TOM		TCOM	TC0C	TC1M	TC1C	TC1R	STKP
Е	PUB				PUA	PUC		INDF								
F									STK3L	STK3H	STK2L	STK2H	STK1L	STK1H	STKOL	STK0H

RREG=工作寄存器和ROM查表寄存器

STATUS=特殊标志寄存器

VREFH=ADC参考电压寄存器

ADB=ADC数据寄存器

YREG, ZREG=专用寄存器

ANSEL=IOB口的配置控制寄存器

ADM=ADC模式寄存器

ADR=ADC精度选择寄存器

晶哲科技 改变从芯开始

第 9 页 共 33 页

OEx=IOx模式选择寄存器
INTRQ=终端请求寄存器
OSCM=震荡模式寄存器
TCOR=TIMERO自动装载数据缓存器
IOxIOx数据缓存器
TCOM, TC1M=TIMERO/TIMER1模式寄存器
TC1R=TIMER1自动装载数据寄存器
PUx=IOx上拉电阻控制寄存器

PEDGE INTO模式控制寄存器 INTEN=中断使能寄存器 WDTR=看门狗清零寄存器 PCH, PCL=程序计数器 TOM=TIMERO/TIMER1加速和TIMERO唤醒功能寄存器 TCOC, TC1C=TIMERO/TIMER1计数缓存器 STKP=堆栈指针 INDF=间接寻址寄存器

2.2.3 寄存器位描述

STK0~STK3=堆栈寄存器

地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	注释
082H	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0	R/W	RREG
083H	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0	R/W	ZREG
084H	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0	R/W	YREG
086H	NT0	NPD	LVD36	LVD24		С	DC	Z	R/W	STATUS
0AEH	ANSEL7	ANSEL6		ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0	R/W	ANSEL
0AFH	EVHENB						VHS1	VHS0	R/W	VREFH
0B1H	ADENB	ADS	EOC	GCHS		CHS2	CHS1	CHS0	R/W	ADM
0B2H	ADB11	ADB10	ADB9	ADB8	ADB7	ADB6	ADB5	ADB4	R	ADB
0B3H		ADCKS1		ADCKS0	ADB3	ADB2	ADB1	ADB0	R/W	ADR
0B8H					OEB3	OEB2	OEB1	OEB0	R/W	OEB
0BFH				INT0G1	INT0G0				R/W	PEDGE
0C4H	OEA7	OEA6		OEA4	OEA3	OEA2	OEA1	OEA0	R/W	OEA
0C5H				OEC4	OEC3				R/W	OEC
0C8H	ADCIRQ	TC1IRQ	TC0IRQ				PB1IRQ	PB0IRQ	R/W	INTRQ
0С9Н	ADCIEN	TC1IEN	TC0IEN				PB1IEN	PB0IEN	R/W	INTEN
0CAH				CPUM1	CPUM0	CLKMD	STPHX		R/W	OSCM
0ССН	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0	W	WDTR
0CDH	TC0R7	TC0R6	TC0R5	TC0R4	TC0R3	TC0R2	TC0R1	TC0R0	W	TC0R
0СЕН	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	R/W	PCL
0CFH							PC9	PC8	R/W	РСН
0D0H				IOB4	IOB3	IOB2	IOB1	IOB0	R/W	IOB
0D4H	IOA7	IOA6		IOA4	IOA3	IOA2	IOA1	IOA0	R/W	IOA
0D5H				IOC4	IOC3				R/W	IOC
0D8H					TC1X8	TC0X8	TC0GN		R/W	T0M
0DAH	TC0ENB	TC0rate2	TC0rate1	TC0rate0	TC0CKS	ALOAD0	TC0OUT	PWM0OUT	R/W	TC0M
0DBH	TC0C7	TC0C6	TC0C5	TC0C4	TC0C3	TC0C2	TC0C1	TC0C0	R/W	TC0C
0DCH	TC1ENB	TC1rate2	TC1rate1	TC1rate0	TC1CKS	ALOAD1	TC1OUT	PWM1OUT	R/W	TC1M
0DDH	TC1C7	TC1C6	TC1C5	TC1C4	TC1C3	TC1C2	TC1C1	TC1C0	R/W	TC1C
0DEH	TC1R7	TC1R6	TC1R5	TC1R4	TC1R3	TC1R2	TC1R1	TC1R0	W	TC1R
0DFH	GIE					STKPB2	STKPB1	STKPB0	R/W	STKP

晶哲科技 改变从芯开始

					I					
0E0H					PUB3	PUB2	PUB1	PUB0	W	PUB
0E4H	PUA7	PUA6		PUA4	PUA3	PUA2	PUA1	PUA0	W	PUA
0E5H				PUC4	PUC3				W	PUC
0E7H	INDF7	INDF6	INDF5	INDF4	INDF3	INDF2	INDF1	INDF0	R/W	INDF
0F8H	S3PC7	S3PC6	S3PC5	S3PC4	S3PC3	S3PC2	S3PC1	S3PC0	R/W	STK3L
0F9H							S3PC9	S3PC8	R/W	STK3H
0FAH	S2PC7	S2PC6	S2PC5	S2PC4	S2PC3	S2PC2	S2PC1	S2PC0	R/W	STK2L
0FBH							S2PC9	S2PC8	R/W	STK2H
0FCH	S1PC7	S1PC6	S1PC5	S1PC4	S1PC3	S1PC2	S1PC1	S1PC0	R/W	STK1L
0FDH							S1PC9	S1PC8	R/W	STK1H
0FEH	S0PC7	S0PC6	S0PC5	S0PC4	S0PC3	S0PC2	S0PC1	S0PC0	R/W	STK0L

2.2.4 累加器(ACC)

位于 CPU 内核中的 8 位数据寄存器 ACC,用于在 ALU 和数据存储器之间传送数据,如操作结果为 零(Z)或有进位产生(C 或 DC),状态寄存器 STATUS 中的相应位也会改变。

2.2.5 状态寄存器(STATUS)

寄存器 STATUS 中包含 ALU 运算状态信息、系统复位状态信息和 LVD 检测信息,其中,位 NTO 和 NPD 显示系统复位状态信息,包括上电复位、LVD 复位、外部复位和看门狗复位;位 C、DC 和 Z 显示 ALU 的运算信息。位 LVD24 和 LVD36 显示了单片机供电电压状况。

086H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STATUS	NT0	NPD	LVD36	LVD24	-	C	DC	Z
读/写	R/W	R/W	R	R	R	R/W	R/W	R/W
复位后	X	X	0	0	1	0	0	0

Bit [7:6] NT0, NPD: 复位状态标志。

NT0	NPD	复位状态
0	0	看门狗复位
0	1	保留
1	0	LVD 复位
1	1	外部复位

Bit 5 LVD36: 3.6V LVD 工作电压标志, LVD 编译选项为 LVD_H 时有效。

0=系统工作电压 VDD 超过 3.6V, 低电压检测器没有工作;

1=系统工作电压 VDD 低于 3.6V, 说明此时低电压检测器已处于监控状态。

Bit 4 LVD24: 2.4V LVD 工作电压标志, LVD 编译选项为 LVD M 时有效。

0=系统工作电压 VDD 超过 2.4V, 低电压检测器没有工作;

1=系统工作电压 VDD 低于 2.4V, 说明此时低电压检测器已处于监控状态。

Bit 2 C: 进位标志。

1 =加法运算后有进位、减法运算没有借位发生或移位后移出逻辑"1"或比较运算的结果 ≥ 0 :

0 =加法运算后没有进位、减法运算有借位发生或移位后移出逻辑"0"或比较运算的结果 < 0。

Bit 1 DC: 辅助进位标志。

1= 加法运算时低四位有进位,或减法运算后没有向高四位借位;

0 = 加法运算时低四位没有进位,或减法运算后有向高四位借位。

Bit 0 Z: 零标志。

晶哲科技 改变从芯开始 第 11 页 共 33 页 www.wxjzkj.com 用芯成就未来

- 1= 算术/逻辑/分支运算的结果为零;
- 0= 算术/逻辑/分支运算的结果非零。

2.2.6 RREG 寄存器

- 8 位缓存器 RREG 主要有以下两个功能:
- 作为工作寄存器使用;

存储执行查表指令后的高字节数据。(执行 MOVC 指令,指定 ROM 单元的高字节数据会被 存入 RREG 寄存器而低字节数据则存入 ACC。)

082H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RREG	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR 的值	X	X	X	X	X	X	X	X

2.2.7 YREG、ZREG 寄存器

寄存器 YREG 和 ZREG 都是 8 位缓存器, 主要用途如下:

- 普通工作寄存器;
- RAM 数据寻址指针 INDF;
- 配合指令 MOVC 对 ROM 数据进行查表。

084H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
YREG	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0
读/写	R/W							
复位后	X	X	X	X	X	X	X	X

083H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ZREG	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0
读/写	R/W							
复位后	X	X	X	X	X	X	X	X

▶ 例:用 YREG、ZREG 作为数据指针,访问 bank0 中 025H 处的内容。

MOVIR 25H,ZREG

; Z 指向 25H。

MOVRA

INDF

;数据送入 ACC。

▶ 例:利用数据指针 INDF 对 RAM 数据清零。

MOVIR 7FH,ZREG

; Z = 7FH, RAM 区的最后单元。

CLR YZ BUF:

CLRR INDF

; @YZ 清零。

DJZR ZREG,R

CLR_YZ_BUF

,不为零。

GOTO CLRR

INDF

;

END_CLR:

2.2.8 程序计数器

程序计数器 PC 是一个 10 位二进制程序地址寄存器,分高 2 位和低 8 位。专门用来存放下一条需要执行指令的内存地址。通常,程序计数器会随程序中指令的执行自动增加。若程序执行 CALL 和 GOTO 指令时, PC 指向特定的地址。

晶哲科技 改变从芯开始

第 12 页 共 33 页

	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PC	-	-	-	-	-	-	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
复位后	_	-	-	-	-	-	0	0	0	0	0	0	0	0	0	0
		РСН										PO	CL			

2.2.9 堆栈

堆栈缓存器共4层,程序进入中断或执行 CALL 指令时,用来存储程序计数器 PC 的值。寄存器 STKP 为堆栈指针, STKnH 和 STKnL 分别是各堆栈缓存器的高、低字节。

堆栈指针 STKP 是一个 3 位寄存器, 存放被访问的堆栈单元地址, 10 位数据存储器 STKnH 和 STKnL 用于暂存堆栈数据。

使用入栈指令 PUSH 和出栈指令 POP 可对堆栈缓存器进行操作。堆栈操作遵循后进先出(LIFO) 的原则,入栈时堆栈指针 STKP 的值减 1,出栈时 STKP 的值加 1,这样,STKP 总是指向堆栈缓存器 顶层单元。

系统进入中断或执行 CALL 指令之前,程序计数器 PC 的值被存入堆栈缓存器中进行入栈保护。

0DFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STKP	GIE	-	-	-	-	STKPB2	STKPB1	STKPB0
读/写	R/W	R	R	R	R	R/W	R/W	R/W
复位后	0	1	1	1	1	1	1	1

Bit[2:0] STKPBn: 堆栈指针(n=0~2)。

Bit 7 GIE: 全局中断控制位。

0 = 禁止;

1 = 使能。

0F0H-0FFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STKXH	-	-	-	-	-	-	SXPC9	SXPC8
读/写	R	R	R	R	R	R	R/W	R/W
复位后	0	0	0	0	0	0	0	0

0F0H-0FFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STKXL	SXPC7	SXPC6	SXPC5	SXPC4	SXPC3	SXPC2	SXPC1	SXPC0
读/写	R	R	R	R	R	R/W	R/W	R/W
复位后	0	0	0	0	0	0	0	0

2.2.10 寻址方式

三种寻址方式:

- 立即寻址:立即数参与运算的寻址方式
- 直接寻址:寄存器参与运算的寻址方式
- 间接寻址:由指针 FSR 指向的寄存器参与运算的寻址方式。INDF 寄存器不是物理寄存器,对 INDF 寄存器操作可以实现间接寻址。

(1) 立即寻址:

ADDIA 06h ; ACC 的内容加6,结果放入A

MOVAR RREG,12H ; 0x12 放入RREG

注: 立即数寻址中, 指定的 RAM 单元必须是 80H-87H的工作寄存器。

晶哲科技 改变从芯开始

第 13 页 共 33 页

(2) 直接寻址:

MOVAR 20H ; A 的内容装入 20H 地址

(3) 间接寻址:

MOVIR 0,YREG ; YREG 清零。

MOVIR 12H,ZREG; 设定寄存器地址。

MOVRA INDF

3 复位

3.1 复位方式

- ◆ 上电复位 (POR)
- ◆ 外部复位 (MCLRB Reset)
- ◆ 欠压复位(BOR)
- ◆ 门狗定时器复位(WDT Reset)

JZ8P1601 有以上 4 种复位方式,任何一种复位都会使 PC 程序计数器清零,让程序从 0000H 处开始跑,并且使寄存器值复位。通过 STATUS 寄存器中的 NT0 和 NPD 位可以判断是哪种复位方式。

4 系统时钟

4.1 概述

JZ8P1601 支持双时钟系统: 高速时钟和低速时钟。高速时钟由外部晶体震荡器和内置的 16MHz RC 震 荡电路(IHRC16KHz)提供,低速时钟由内置的低速 RC 振荡电路(ILRC 16KHz @3V,32KHz @5V)和低速晶体震荡器(32768Hz)提供。两种时钟都可作为系统时钟源 Fosc,系统工作在低速模式时,Fosc 4 分频后作为一个指令周期。

- ▶ 普通模式 (高速时钟): Fcpu = Fhosc / N, N = 1 ~ 16, Fcpu 的编译选项决定 N 的值。
- ➤ 低速模式 (低速时钟): Fcpu = Flosc/4。

4.2 OSCM 寄存器

寄存器 OSCM 控制振荡器的状态和系统的工作模式。

0CAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCM	-	-	-	CPUM1	CPUM0	CLKMD	STPHX	-
读/写	R	R	R	R/W	R/W	R/W	R/W	R
复位后	1	1	1	0	0	0	0	1

Bit 1 STPHX: 高速振荡器控制位(仅用于低速模式或有低速模式进入的绿色模式)。

0 = 运行;

1 = 停止,内部低速 RC 振荡器仍然运行

Bit 2 CLKMD: 系统时钟模式控制位。

0=普通(双时钟)模式,高速时钟作为系统时钟;

1=低速模式,低速时钟作为系统时钟。

Bit[4:3] CPUM[1:0]: CPU 工作模式控制位。

00 = 普通模式;

01 = 睡眠模式;

10 = 绿色模式;

11 = 系统保留。

晶哲科技 改变从芯开始

第 14 页 共 33 页

注:高速模式下,关闭 STPHX 会导致程序停止运行。绿色模式下 TC0/TC1 可以选择 FCPU 或 FOSC

4.3 系统高速时钟

High_Clk	说明
IHRC	内部 16MHz RC 振荡器作为系统时钟源, XIN 和 XOUT 引脚为通用 I/O
外部RC	外部RC 振荡器为系统高速时钟, XOUT 引脚为通用I/O 口。
外部晶振12M	外部晶体振荡器作为系统高速时钟,典型频率为 12MHz。
外部晶振4M	外部晶体振荡器作为系统高速时钟,典型频率为4MHz。

4.3.1 内部高速 RC 振荡器

编译选项"IHRC_16M"控制单片机的内置 RC 高速时钟(16MHz)。若选择"IHRC_16M",则 内置 16MHz RC 振荡器作为系统时钟源,XIN 和 XOUT 引脚作为通用 I/O 口。

● IHRC: 系统高速时钟来自内置 16MHz RC 振荡器, XIN/XOUT 引脚作为普通的 I/O 引脚。

4.4 系统低速时钟

Low_Clk	说明
ILRC	内部 32k(5V) RC 振荡器作为系统时钟源, XIN 和 XOUT 引脚为通用I/O 口。
外部晶体振荡器	外部晶体振荡器32768Hz 为系统低速时钟。

系统低速时钟源可以选择内置的低速 RC 振荡器。低速时钟的输出频率受系统电压和环境温度的影响,通常为 5V 时输出 32KHZ, 3V 时输出 16KHZ。

低速时钟可作为看门狗定时器的时钟源。由 CLKMD 控制系统低速工作模式。

- ☞ Flosc = 内部低速 RC 振荡器(16KHz @3V、32KHz @5V)。
- 低速模式 Fcpu = Flosc / 4。
 系统工作在睡眠模式下,可以停止低速 RC 振荡器。
- ▶ 例: 进入休眠模式

BSET OSCM, CPUM0

注:不可以单独停止内部低速时钟;由寄存器 OSCM 的位 CPUM0 和 CPUM1 的设置决定内部低速时钟的状态。 系统低速时钟源也可以选择外部 32768HZ 晶体振荡器,由配置字使能。

注:使能32768晶体振荡器后,系统高速时钟自动配置成IHRC或外部RC. TCO时钟自动为32768晶体振荡. 并且在任何工作模式下都无法关闭.

5 系统工作模式

5.1 概述

- 普通模式 (高速模式);
- 低速模式:
- 睡眠模式:
- 绿色模式。

JZ8P1601 支持以上 4 种工作模式,可以通过对 OSCM 寄存器设置来完成模式切换寄存器 OSCM 控制振荡器的状态和系统的工作模式。

晶哲科技 改变从芯开始

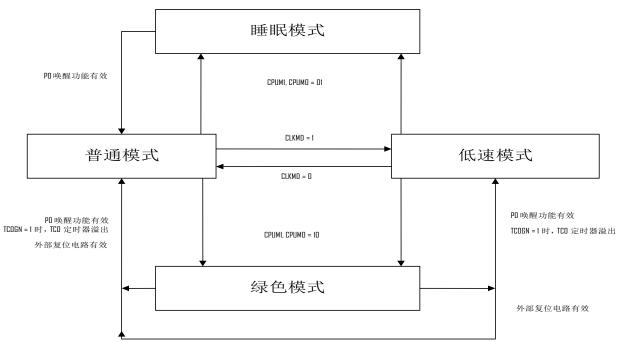
第 15 页 共 33 页

0CAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCM	-	-	-	CPUM1	CPUM0	CLKMD	STPHX	1
读/写	R	R	R	R/W	R/W	R/W	R/W	R
复位后	1	1	1	0	0	0	0	1

Bit 1 STPHX: 高速振荡器控制位(仅用于低速模式或有低速模式进入的绿色模式)。

0 = 运行;

1= 停止,内部低速 RC 振荡器仍然运行


Bit 2 CLKMD: 系统时钟模式控制位。

0=普通(双时钟)模式,高速时钟作为系统时钟;

1=低速模式,低速时钟作为系统时钟。

Bit[4:3] CPUM[1:0]: CPU 工作模式控制位。

00= 普通模式; 01= 睡眠模式; 10= 绿色模式; 11=系统保留

工作模式说明,

工作模式 奶奶:					
工作模式	普通模式	低速模式	绿色模式	睡眠模式	备注
EHOSC	运行	STPHX 控	STPHX 控	停止	
IHRC	运行	STPHX 控	STPHX 控	停止	
ILRC	运行	运行	运行	停止	
CPU 指令	执行	执行	停止	停止	
TC0	*有效	*有效	*有效	无效	*TC0ENB=1 时有效
TC1	*有效	*有效	*有效	无效	*TC1ENB=1 时有效
看门狗定时器	Watch_Dog	Watch_Dog	Watch_Dog	Watch_Dog	参考 CODE OPTION
	编译选项控	编译选项控	编译选项控	编译选项控	说
	制	制	制	制	明
内部中断	全部有效	全部有效	TC1,TC0	全部无效	
外部中断	全部有效	全部有效	全部有效	全部有效	
唤醒功能	-	-	P0, TC0, 复	P0, 复位	
			位		

晶哲科技 改变从芯开始

第 16 页 共 33 页

EHOSC: 外部高速时钟。 IHRC: 内部高速时钟(16M RC 振荡器)。 ILRC: 内部低速时钟(3V 时 16K RC 振荡器, 5V 时 32K 振荡器)。

注: 高速模式下, 关闭 STPHX 会导致程序停止运行。绿色模式下 TCO/TC1 可以选择 FCPU 或 FOSC

5.2 普通模式

普通模式是系统高速时钟正常工作模式,系统时钟由高速震荡器提供,程序正常执行。任意一种复位方式复位后,系统进入普通模式。当系统从睡眠模式唤醒后进入普通模式。当系统由普通模式切换到 绿色模式,唤醒后进入普通模式。

5.3 低速模式

低速模式是系统低速时钟正常工作模式,系统时钟由内部低速 RC 振荡器或 32768 晶体振荡器提供,程序正常执行。切换到低速模式后,高频振荡器不会自动关掉,需通过 OSCM 寄存器中 STPHX 位来控 制。低速模式下,系统工作频率被固定为 FOSC/4。从低速模式切换的绿色模式唤醒后进入低速模式。

5.4 睡眠模式

睡眠模式是系统功耗最低的模式,程序停止运行,高低频振荡器都停止工作。从任何模式进入睡眠 模式,唤醒后进入到普通模式。睡眠模式可以由 IOB 口的电平变化触发唤醒。

5.5 绿色模式

绿色模式下,程序停止运行,除了 IOB 口的电平变化触发唤醒外,定时器的溢出中断也可以唤醒。 定时器的时钟源为仍在工作的系统时钟。

6 中断

6.1 概述

JZ8P1601 有 5 个中断源: 3 个内部中断(TC0/TC1/ADC)和 2 个外部中断(INT0/INT1)。外部中断可以将系统从睡眠模式中唤醒进入高速模式,在返回到高速模式前,中断请求被锁定。一旦程序进入中断,寄存器 STKP 的位 GIE 被硬件自动清零以避免响应其它中断。系统退出中断后,硬件自动将 GIE 置 "1",以响应下一个中断。中断请求存放在寄存器 INTRQ 中。

6.2 中断请求使能寄存器 INTEN

中断请求控制寄存器 INTEN 包括所有中断的使能控制位。INTEN 的有效位被置为"1"则系统进入该中断服务程序,程序计数器入栈,程序转至 0008H 即中断程序。程序运行到指令 RETI 时,中断结束,系统退出中断服务。

0С9Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTEN	ADCIEN	TC1IEN	TC0IEN	-	-	-	INT1IEN	INT0IEN
读/写	R/W	R/W	R/W	R	R	R	R/W	R/W
复位后	0	0	0	1	1	1	0	0

Bit 0 INTOIEN: IOB.0 外部中断(INTO)控制位。

0 = 无效;

1= 有效。

Bit 1 INT1IEN: IOB.1 外部中断(INT1)控制位。

0 = 无效;

1= 有效。

Bit 5 TC0IEN: TC0 中断控制位。

0 = 无效;

晶哲科技 改变从芯开始

第 17 页 共 33 页 www.

1= 有效。

Bit 6 TC1IEN: TC1 中断控制位。

0 = 无效;

1= 有效。

Bit 7 ADCIEN: ADC 中断控制位。

0 = 无效;

1= 有效。

注: 未用位只读,读出为'1'

6.3 中断请求寄存器 INTRQ

中断请求寄存器 INTRQ 中存放各中断请求标志。一旦有中断请求发生,则 INTRQ 中对应位将被置 "1",该请求被响应后,程序应将该标志位清零。根据 INTRQ 的状态,程序判断是否有中断发生,并执行相应的中断服务。

0C8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTRQ	ADCIRQ	TC1IRQ	TC0IRQ	-	-	-	INT1IRQ	INT0IRQ
读/写	R/W	R/W	R/W	R	R	R	R/W	R/W
复位后	0	0	0	1	1	1	0	0

Bit 0 INTOIRQ: IOBO 中断 (INTO) 请求标志。

0=INT0 无中断请求;

1 = INT0 有中断请求。

Bit 1 INT1IRQ: IOB1 中断 (INT1) 请求标志。

0 = INT1 无中断请求;

1 = INT1 有中断请求。

Bit 5 TC0IRQ: TC0 中断请求标志。

0 = TC0 无中断请求;

1 = TC0 有中断请求。

Bit 6 TC1IRO: TC1 中断请求标志。

0 = TC1 无中断请求;

1 = TC1 有中断请求。

Bit 7 TC0IRQ: ADC 中断请求标志。

0 = ADC 无中断请求;

1=ADC 有中断请求。

注:未用位只读,读出为'1'

6.4 GIE 全局中断

只有当全局中断控制位 GIE 置"1"的时候程序才能响应中断请求。一旦有中断发生,程序计数器 (PC) 指向中断向量地址 (ORG8), 堆栈层数加 1。

ODFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	-	_	-	-	STKPB2	STKPB1	STKPB0
读/写	R/W	R	R	R	R	R/W	R/W	R/W
复位后	0	1	1	1	1	1	1	1

Bit 7 GIE: 全局中断控制位。

0=禁止全局中断;

1= 使能全局中断。

晶哲科技 改变从芯开始

第 18 页 共 33 页

注:未用位只读,读出为'1'

6.5 PUSH, POP 处理

有中断请求发生并被响应后,程序转至 0008H 执行中断子程序。响应中断之前,必须保存 ACC、STATUS 的内容。芯片提供 PUSH 和 POP 指令进行入栈保存和出栈恢复,从而避免中断结束后可能的程序运行错误。

注: "PUSH"、"POP"指令仅对ACC 和STATUS 作中断保护,而不包括NT0 和NPD。PUSH/POP 缓存器是唯一的且仅有一层。

6.6 INTO (IOBO) 中断

INTO 被触发,则无论 INTOIEN 处于何种状态,INTOIRQ 都会被置"1"。如果 INTOIRQ=1 且 INTOIEN=1,系统响应该中断;如果 INTOIRQ=1 而 INTOIEN=0,系统并不会执行中断服务。在处理多中断时尤其需要注意。

如果中断的触发方向和唤醒功能的触发方向是一样的,则在系统由 IOB0 从睡眠模式和绿色模式唤醒时,INT0 的中断请求(INT0IRQ)就会被锁定。系统会在唤醒后马上进入中断向量地址执行中断服务程序。

0BFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PEDGE	-	-	-	INT0G1	INT0G0	-	-	ı
读/写	R	R	R	R/W	R/W	R	R	R
复位后	1	1	1	1	0	1	1	1

Bit[4:3] INT0G[1:0]: INT0(IOB.0) 中断触发控制位。

00= 保留;

01 = 上升沿触发;

10= 下降沿触发;

11 = 上升/下降沿触发(电平触发)。

6.7INT1 (IOB1) 中断

INT1 被触发,则无论 INT1IEN 处于何种状态,INT1IRQ 都会被置"1"。如果 INT1IIRQ = 1 且 INT1IEN = 1,系统响应该中断;如果 INT1IRQ = 1 而 INT1IEN = 0,系统并不会执行中断服务。在处理多中断时尤其需要注意。

如果中断的触发方向和唤醒功能的触发方向是一样的,则在系统由 IOB1 从睡眠模式和绿色模式唤醒时,INT1 的中断请求(INT1IRQ)就会被锁定。系统会在唤醒后马上进入中断向量地址执行中断服务程序。

注: INT1(IOB.1) 中断由下降沿触发

6.8 TCO 中断

TC0C 溢出时,无论 TC0IEN 处于何种状态,TC0IRQ 都会置"1"。若 TC0IEN 和 TC0IRQ 都置"1",系统就会响应 TC0 的中断;若 TC0IEN = 0,则无论 TC0IRQ 是否置"1",系统都不会响应 TC0 中断。 尤其需要注意多种中断下的情形。

6.9 TC1 中断

TC1C 溢出时,无论 TC1IEN 处于何种状态,TC1IRQ 都会置 "1"。若 TC1IEN 和 TC1IRQ 都置"1"系统就会响应 TC1 的中断;若 TC1IEN=0,则无论 TC1IRQ 是否置"1",统都不会响应 TC1 中断。尤其需要注意多种中断下的情形。

晶哲科技 改变从芯开始

第 19 页 共 33 页

6.10 ADC 中断

当 ADC 转换完成后,无论 ADCIEN 是否使能,ADCIQR 都会置"1"。若 ADCIEN 和 ADCIQR 都置"1",那么系统就会响应 ADC 中断。若 ADCIEN = 0,不管 ADCIRQ 是否置"1",系统都不会进入 ADC中断。用户应注意多种中断下的处理。

7 I/0 口

7.1 I/0 口模式

寄存器 TRISX 控制 I/O 口的工作模式。

0B8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OEB	-	-	-	-	OEB3	OEB2	OEB1	OEB0
读/写	R	R	R	R	R/W	R/W	R/W	R/W
复位后	1	1	1	1	0	0	0	0

0C4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OEA	OEA/7	OEA6	-	OEA4	OEA3	OEA2	OEA1	OEA0
读/写	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
复位后	1/0	1/0	1	0	0	0	0	0

0C5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OEC	-	-	-	OEC4	OEC3	-	-	-
读/写	R	R	R	R/W	R/W	R	R	R
复位后	1	1	1	0	0	1	1	1

Bit[7:0] OEXn[7:0]: IOX 模式控制位(n = 0~5)。

0= 输入模式;

1= 输出模式。

IOB4 是单向输入引脚, OEB4 = 1。

芯片配置字不使能PA6、PA7功能,则OEA[7:6]为只读寄存器,读出为0;反之,OEA[7:6]为读写寄存器,复位值 为00

7.2 I/O 上拉电阻寄存器

0E0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PUB	-	-	-	-	PUB3	PUB2	PUB1	PUB0
读/写	R	R	R	R	W	W	W	W
复位后	0	0	0	0	0	0	0	0

0E4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PUA	PUA7	PUA6	-	PUA4	PUA3	PUA2	PUA1	PUA0
读/写	R/W	R/W	R	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

0E5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PUC	-	-	-	PUC4	PUC3	-	-	-
读/写	R	R	R	W	W	R	R	R
复位后	0	0	0	0	0	0	0	0

晶哲科技 改变从芯开始

第 20 页 共 33 页

Bit[7:0] PUXn[7:0]: IOn 上拉电阻控制位(n=0~7)。

0 = 禁止上拉电阻;

1= 使能上拉电阻。

注: IOB4 无上拉电阻, PUX 是只写寄存器,读出'0'

7.3 I/0 口数据寄存器

0D0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOB	-	-	-	IOB4	IOB3	IOB2	IOB1	IOB0
读/写	R	R	R	R	R/W	R/W	R/W	R/W
复位后	1	1	1	X	0	0	0	0

0D4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOA	IOA7	IOA6	-	IOA4	IOA3	IOA2	IOA1	IOA0
读/写	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
复位后	1/0	1/0	1	0	0	0	0	0

0D5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOC	-	-	-	IOC4	IOC3	-	-	-
读/写	R	R	R	R/W	R/W	R	R	R
复位后	1	1	1	0	0	1	1	1

注: 使能外部复位时, 10B4 的值保持为 "1" 作为输入口时, 10B4 的值为端口值

芯片配置字不使能PA6、PA7功能,则IOA[7:6]为只读寄存器,读出为0;反之,IOA[7:6]为读写寄存器,复位值为00

7.4 IOA 口 ADC 共用引脚

IOA 口和 ADC 的输入口共用。同一时间只能设置 IOA 口的一个引脚作为 ADC 的测量信号输入口(通过 ADM 寄存器来设置)。具体应用中,当输入一个模拟信号到 CMOS 结构端口,尤其当模拟信号为 1/2 VDD 时,将可能产生额外的漏电流。同样,当 IOA 口外接多个模拟信号时,也会产生额外的漏 电流。在睡眠模式下,上述漏电流会严重影响到系统的整体功耗。ANSEL 为 IOA 口的配置寄存器。将 ANSEL[7:0]置"1",其对应的 IOA 口将被设置为纯模拟信号输入口,从而避免上述漏电流的情况。

0AEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0AEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ANSEL	ANSEL7	ANSEL6	-	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
读/写	R	R	R	R/W	R/W	R/W	R/W	R/W
复位后	1	1	1	0	0	0	0	0

Bit[7:6][4:0] ANSEL[7:6][4:0]: IOAn 控制位。

0 = IOAn 作为模拟信号输入或普通 I/O 引脚;

1=IOAn 作为仅作模拟信号输入引脚。

晶哲科技 改变从芯开始 第 21 页 共 33 页 www.wxjzkj.com 用芯成就未来

注: 当 IOAn 作为普通 I/O 口而不是 ADC 输入引脚时, ANSELn 必须置为 0, 否则 IOAn 的普通 I/O 信号会被 隔离开来。选择为模拟通道的 I0 其对应的上拉电阻功能被屏蔽

当 ANSELX 某位为 1 时,对应的 OEAX 位将不能被写成 1

IOA 的 ADC 模拟输入由寄存器 ADM 的 GCHS 和 CHSn 位控制,若 GCHS = 0, IOAn 为普通的 I/O 引脚,若 GCHS = 1, CHSn 所对应的 IOAn 用作 ADC 模拟信号输入引脚。

0B1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADM	ADENB	ADS	EOC	GCHS	-	CHS2	CHS1	CHS0
读/写	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
复位后	0	0	0	0	1	0	0	0

Bit 4GCHS: ADC 输入通道控制位。

0 = 禁止 AIN 通道;

1 = 开启 AIN 通道。

Bit[2:0] CHS[2:0]: ADC 输入通道选择位。

000 = AIN0; 001 = AIN1; 010 = AIN2; 011 = AIN3; 100 = AIN4; 101 = AIN5.

110 = AIN6; 111=AIN7

注: 在设置 IOAn 为普通的 I/O 引脚时,必须保证 IOAn 的 ADC 功能已经被禁止。否则当 GCHS = 1 时, CHS[2:0] 所指向的 IOAn 会被自动设为 ADC 输入引脚。

IOA0 可作为普通的 I/O 引脚,ADC 输入(AIN0)和 ADC 外部参考电压的高电平输入端。VERFH 寄存器的 EVHENB 位是 ADC 的外部参考电压的高电平输入控制位。若使能 EVHENB, IOA0 的普通 I/O 功能和 ADC 输入(AIN0)功能被禁止。IOA0 和 ADC 的参考电压输入端直接相连。

注: 若想使能 IOA0 的普通 I/O 功能和 AIN0 功能,必须将 EVHENB 设置为"0"

0AFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
VREFH	EVHENB	-	-	-	-	-	VHS1	VHS0
读/写	R/W	R	R	R	R	R	R/W	R/W
复位后	0	1	1	1	1	1	0	0

Bit 7EVHENB: ADC 外部参考电压的高电平输入控制位。

0 = 禁止 ADC 参考电压的高电平输入:

1 = 允许 ADC 参考电压的高电平输入。

Bit[1:0] VHS[1:0]: ADC 内部参考电压选择位

VHS1	VHS0	内部 VREFH 电压
1	1	VDD
1	0	4.0V
0	1	3.0V
0	0	2.0V

8 定时器

8.1 看门狗定时器

看门狗定时器 WDT 是一个 4 位二进制计数器,用于监控程序的正常执行。如果由于干扰,程序进入了未知状态,看门狗定时器溢出,系统复位。看门狗的工作模式由编译选项控制,其时钟源由内部低速 RC 振荡器(16KHz @3V,32KHz @5V)提供。

看门狗溢出时间 = 8192 /内部低速振荡器周期 (sec)

VDD	内 部低 速	RC	看门狗溢出时间
	Freq.		
3V	16KHz		512ms
5V	32KHz		256ms

看门狗清零的方法是对看门狗计数器清零寄存器 WDTR 写入清零控制字 5AH。

0ССН	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WDTR	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	VHS2
读/写	W	W	W	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

注:看门狗定时器若在绿色和休眠模式下继续工作,将会唤醒 CPU,唤醒后系统复位

8.2 定时/计数器 TCO/TC1

8.2.1 概述

定时/计数器 TC0 具有双时钟源,可根据实际需要选择内部时钟或外部时钟作为计时标准。其中,内部时钟源来自 Fcpu 或 Fosc(由 TC0X8 标志控制)。外部时钟源 INT0 从 PB.0 端输入(下降沿触发)。寄存器 TC0M 控制 TC0 时钟源的选择。当 TC0 从 0FFH 溢出到 00H 时,TC0 在继续计数的同时产生一个溢出信号,触发 TC0 中断请求。在 PWM 模式,TC0 的溢出时间由寄存器 ALOAD0 和 TC0OUT 位控制。TC0 的主要功能如下:

- ☞ 8位可编程定时器:根据选择的时钟频率信号,产生周期中断;
- ☞ 外部事件计数器:对外部事件计数;
- ☞ 绿色模式唤醒功能: TC0 可以将系统从绿色模式下唤醒;
- ☞ Buzzer 输出;
- PWM 输出。

8.2.2 TCOM 模式寄存器

0DAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TC0M	TC0ENB	TC0rate2	TC0rate1	TC0rate0	TC0CKS	ALOAD0	TC0OUT	PWM0OUT
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位后	0	0	0	0	0	0	0	0

Bit 0 PWM0OUT: PWM 输出控制。

0 = 禁止 PWM 输出:

1= 使能 PWM 输出, PWM 输出占空比由 TOOUT 和 ALOADO 控制。

Bit 1 TC0OUT: TC0 溢出信号输出控制位。仅当 PWM0OUT = 0 时有效。

0= 禁止, PC.4 作为输入/输出口;

1 = 允许, PC.4 输出 TC0OUT 信号。

晶哲科技 改变从芯开始

第 23 页 共 33 页

Bit 2 ALOADO: 自动装载控制位。仅当 PWM0OUT = 0 时有效。

0 = 禁止 TC0 自动重装; 1 = 允许 TC0 自动重装。

Bit 3 TC0CKS: TC0 时钟信号控制位。

0 = 内部时钟 (Fcpu 或 Fosc);

1 = 外部时钟, 由 IOB.0/INT0/T0CKI 输入。

Bit [6:4] TC0RATE[2:0]: TC0 分频选择位。

TC0RATE [2:0]	TC0X8 = 0	TC0X8 = 1
000	Fcpu / 256	Fosc / 128
001	Fcpu / 128	Fosc / 64
010	Fcpu / 64	Fosc / 32
011	Fcpu / 32	Fosc / 16
100	Fcpu / 16	Fosc / 8
101	Fcpu / 8	Fosc / 4
110	Fcpu / 4	Fosc / 2
111	Fcpu / 2	Fosc / 1

Bit 7TC0ENB: TC0 启动控制位。

0=关闭;

1=开启。

注:1. 当 ALOADO(无论 TCOENB 使能还是不使能)从 0 置 1 操作时, TCOR 会自动装载到 TCOC

2. 当 ALOADO=1 时, TCOC 溢出时会自动装载 TCOR 的值

3. 当 TCO 设置为 PWM 模式且 ALOADO 为 0 时, TCOC 会自动装载 TCOR 值

4. 当 TCOOUT 或 PWMOUT 有效时,相应端口自动设置为输出端口

5. 设置为 PWMOUT 模式时, TCO 的溢出时间有 ALOADO 和 TCOOUT 决定;但 TCOC 的计数器计数范围仍未 0~FFH

8.2.3 TC1X8, TC0X8, TC0GN 标志

0D8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T0M	-	-	-	-	TC1X8	TC0X8	TC0GN	-
读/写	R	R	R	R	R/W	R/W	R/W	R
复位后	1	1	1	1	0	0	0	1

Bit 1TC0GN: TC0 绿色模式唤醒功能控制位。

0 = 禁止 TC0 的唤醒功能;

1 = 允许 TC0 的唤醒功能。

Bit 2TC0X8: TC0 内部时钟选择控制位。

0 = TC0 内部时钟来自 Fcpu, TC0RATE = Fcpu/2~Fcpu/256;

1 = TC0 内部时钟来自 Fosc, TC0RATE = Fosc/1~Fosc/128。

Bit 3TC1X8: TC1 内部时钟选择控制位。

0 = TC1 内部时钟来自 Fcpu, TC0RATE = Fcpu/2~Fcpu/256;

1 = TC1 内部时钟来自 Fosc, TC0RATE = Fosc/1~Fosc/128。

注: TCOCKS = 1 时, TCOX8 和 TCORATE可以忽略不计。

晶哲科技 改变从芯开始

第 24 页 共 33 页

8.2.4 TCOC 计数寄存器

0DBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TC0C	TC0C7	TC0C6	TC0C5	TC0C4	TC0C3	TC0C2	TC0C1	TC0C0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

8.2.5 TCOR 自动装载寄存器

TC0 的自动重装功能由 TC0M 的 ALOAD0 位控制。当 TC0C 溢出时, TC0R 的值自动装入 TC0C 中。这样, 用户在使用的过程中就不需要在中断中复位 TC0C。

TC0 为双重缓存器结构。若程序对 TC0R 进行了修改,那么修改后的 TC0R 值首先被暂存在 TC0R 的第一个缓存器中,TC0 溢出后,TC0R 的新值就会被存入 TC0C 中,从而避免 TC0 中断时间出错以及 PWM 和蜂鸣器误动作。

注:在 PWM 模式下,系统自动开启重装功能,ALOAD0 用于控制溢出范围。

0CDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TC0R	TC0R7	TC0R6	TC0R5	TC0R4	TC0R3	TC0R2	TC0R1	TC0R0
读/写	W	W	W	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

注: 只写寄存器, 读出全 0。

8.2.6 TCO 时钟频率输出(蜂鸣器输出)

对 TC0 时钟频率进行适当设置可得到特定频率的蜂鸣器输出(TC0OUT),并通过引脚 P5.4 输出。单片机内部设置 TC0 的溢出频率经过 2 分频后作为 TC0OUT 的频率,即 TC0 每溢出 2 次 TC0OUT 输出一个完整的脉冲,此时,PC.4 的 I/O 功能自动被禁止。

注: 蜂鸣器的输出有效时,"PWM0OUT"必须被置为"0"

8.3 定时/计数器 TC1

与 TC0 定时器功能相同,但没有唤醒功能

8.4 PWM 功能

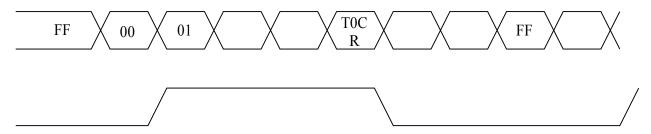
JZ8P1601 可以用硬件产生 PWM 输出。

8.4.1 概述

PWM 信号输出到 PWMnOUT(IOC3/IOCC4 引脚),位 TCnOUT 和 ALOADn 控制 PWM 输出的阶数(256、64、32 和 16)。8 位计数器 TCnC 计数过程中不断与 TCnR 相比较,当 TCnC 计数到两者相等时,PWM 输出低电平,当 TCnC 再次从零开始计数时,PWM 被强制输出高电平。PWMn 输出占空比=TCnR/阶数(阶数= 256、64、32 或 16)。

参考寄存器保持输入 00H 可使 PWM 的输出长时间维持在低电平,通过修改 TCnR 可改变 PWM 输出占空比。

晶哲科技 改变从芯开始



ALOADn	TCnOUT	PWM 占空比	TCnC 有效	TCnR 有效	MAX. PWM	备注
		范围	值	范围	输出频率	
					(Farm = 4MHz)	
0	0	0/256~255/256	00H~0FFH	00H~0FFH	7.8125K	每计数 256
						次溢出
0	1	0/64~63/64	00H~3FH	00H~3FH	31.25K	每计数64
						次 溢出
1	0	0/32~31/32	00H~1FH	00H~1FH	62.5K	每计 数 32
						次溢出
1	1	0/16~15/16	00H~0FH	00H~0FH	125K	每计数16
						次 溢出

注: 选择 TOCKS 时, 以上表格相同

关闭 PWMOUT, TCOR 的 BUFFER 将被清零, PWM 输出信号也会被清零

PWM 产生波形

9 7+1 通道 ADC

9.1 概述

模数转换模块共有 7 条外部通道 (AIN0~AIN4, AIN6~AIN7) 和一条内部通道 (AIN5: 内部 1/4VDD), 4096 阶分辨率的 A/D 转换器,可以将模拟信号转换成 12 位数字信号。进行 AD 转换时,首先要选择输入通道(AIN0~AIN5),然后把 GCHS 和 ADS 位置"1",启动 AD 转换。转换结束后,系统自动将 EOC 设置为"1",并将转换结果存入寄存器 ADB 和寄存器 ADR 中。

9.2 ADM 寄存器

0B1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADM	ADENB	ADS	EOC	GCHS	-	CHS2	CHS1	CHS0
读/写	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
复位后	0	0	0	0	-	0	0	0

Bit 7 ADENB: ADC 控制位。

0 = 禁止;

1= 使能。

Bit 6 ADS: ADC 启动位。

0 = 停止;

1= 开始。

Bit 5 EOC: ADC 状态控制位。

0= 转换过程中;

1= 转换结束, ADS 复位。

晶哲科技 改变从芯开始

第 26 页 共 33 页

Bit 4GCHS: 通道选择位。

0 = 禁止 AIN 通道;

1 = 使能 AIN 通道。

Bit[2:0] CHS[2:0]: ADC 输入通道选择位。

000 = AIN0; 001 = AIN1; 010 = AIN2; 011 = AIN3; 100 = AIN4; 101 = AIN5; 110 = AIN6; 111 = AIN7.

AIN5 是内部 1/4 VDD 输入通道,外部没有输入引脚。AIN5 可以作为电池系统的电池检测器。为了选择合适的内部 VREFH 电平并进行比较,系统内置了这个高性能、廉价的低电池检测器。

注:若 ADENB=1,用户应设置IOA.n/AINn为无上拉电阻的输入模式。系统不会自动设置。若已经设置了ANSEL.n,IOA.n/AINn的数字 I/O 功能(包括上拉电阻)都是隔离开来的。

GCHS=1时,将自动屏蔽选中通道的端口输出功能

9.3 ADR 寄存器

0B3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADR	-	ADCKS1	-	ADCKS0	ADB3	ADB2	ADB1	ADB0
读/写	-	R/W	-	R/W	R	R	R	R
复位后	-	0	-	0	X	X	X	X

Bit[6,4] ADCKS1, ADCKS0: ADC 时钟源选择位。

ADCKS1	ADCKS0	ADC 时钟		
0	0	Fcpu/16		
0	1	Fcpu/8		
1	0	Fcpu		
1	1	Fcpu2		

Bit[3:0] ADR[3:0]: ADC 12 位分辨率的低字节数据缓存器。

注: ADC 缓存器 ADR [3:0]复位后的初始值是未知的。

9.4 ADB 寄存器

0B2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADB	ADB11	ADB10	ADB9	ADB8	ADB7	ADB6	ADB5	ADB4
读/写	R	R	R	R	R	R	R	R
复位后	X	X	X	X	X	X	X	X

Bit[7:0] ADB[7:0]: ADC 12 位分辨率的高字节数据缓存器。

8 位数据缓存器 ADB 用来保存 AD 转换结果的高 8 位(bit4~bit11),转换结果的低 4 位则保存在 ADR 寄存器中。ADB 为只读寄存器,在 8 位 ADC 模式下,AD 转换结果保存在寄存器 ADB 中; 在 12 位模式下,则分别保存在寄存器 ADB 和 ADR 中。

9.5 ANSEL 寄存器

0AEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ANSEL	ANSEL7	ANSEL6	-	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
读/写	R	R	R	R/W	R/W	R/W	R/W	R/W
复位后	1	1	1	0	0	0	0	0

Bit[7:6][4:0] ANSEL[7:6][4:0]: IOA.n 配置控制位。

0=IOA.n 作为模拟输入(ADC 输入)引脚或者数字 I/O 引脚;

1=IOA.n 只能作为单纯的模拟输入引脚,不能作为数字 I/O 引脚。

晶哲科技 改变从芯开始

第 27 页 共 33 页

注: 当 IOA.n 为普通 I/O 而不是 ADC 通道时, ANSEL.n 必须置"0", 否则 IOA.n 的数字 I/O 信号会被隔离。 ANSELX=1 时, 相对性的 0EAX 寄存器将无法写入 1

9.6 VREFH 寄存器

0AFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
VREFH	EVHENB	-	-	-	-	-	VHS1	VHS0
读/写	R/W	R	R	R	R	R	R/W	R/W
复位后	0	1	1	1	1	1	0	0

Bit[1:0] VHS[1:0]: ADC 内部参考电压选择位。

VHS1	VHS0	内部 VREFH 电压
1	1	VDD
1	0	4.0V
0	1	3.0V
0	0	2.0V

注: 若由 VHS[1:0]控制选择的内部 VREFH 电平高于 VDD, 内部 VREFH 为 VDD。例: VHS[1:0] = 10(内部 VREFH = 4.0V) VDD = 3.0V,则实际内部 VREFH = 3.0V。

Bit[7] EVHENB: ADC 内部参考电压控制位。

0= 允许 ADC 内部 VREFH 功能, VREFH 引脚是 IOA.0/AIN0 引脚;

1 = 禁止 ADC 内部 VREFH 功能, IOA.0/AIN0/VREFH 引脚来自外部 VREFH 输入引脚。

注: 若 EVHENB = 1, IOA.0/AIN0 引脚就是外部 VREFH 的输入引脚, IOA.0 的 I/O 功能和 AIN0 功能被隔离。此时,该引脚处于悬浮状态。

9.7 AD 转换时间

12 位 AD 转换时间 = 1/(ADC clock /4)*16 sec

10 指令表

10.1 指令表

参考《ZC 单片机指令集》

11 配置字信息

	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CFG0	C15		VLVDS	1		未定义		CYCLE	MCLRE		Fcpu		WD	ΓEN	OSC	СНМ
CFG1	C17	PIN16	WM		未定			义				IRCCAL				
CFG2		未定义										VRE	FCAL			

配置字	说明					
OSCHM	00: IRC16M					
	01: ERC					
	10: XT12M					
	11: XT4M					
WDTEN	00: WDT 不使能					
	01: 绿色和休眠模式下关闭,运行模式下开启					
	10/11: 始终开启WDT					
Fcpu	111 : 1T					
_	110 : 2T					
	101 : 4T					
	100 : 8T					
	011 : 16T					
	010 : 32T					
	001 : 64T					
	000 : 256T					
MCLRE	1: 使能外部复位功能					
	0: 屏蔽外部复位功能,管脚复用为输入脚					
CYCLE	1: 指令表中 N 值以指令表中为准					
	0: 指令表中 N 恒为 0					
VLVDS	000: LVR1.5V/LVD NONE					
	001: LVR1.8V/LVD NONE					
	010: LVR2.0V/LVD NONE					
	011: LVR3.6V/LVD NONE					
	100: LVR2.0V/LVD2.4V					
	101: LVR2.2V/LVD 2.4V					
	110: LVR2.4V/LVD3.6V					
	111: LVR3.0V/LVD3.6V					
СР	1: 屏蔽代码保护功能					
	0: 使能代码保护功能					
MRTC	1: 32768 晶体震荡器无效					
	0: 32768 晶体震荡器使能					

PIN16	1: 14PIN(屏蔽IOA6、IOA7 功能)
	0: 16PIN (使能IOA6、IOA7 功能)
WM	1: 所有唤醒后回到高速模式
	0:唤醒后回到休眠前模式

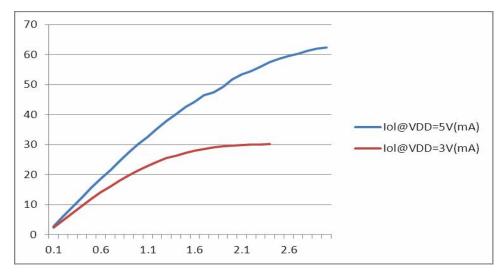
- 注: **1.** 在干扰较大的情况下,建议开启噪声滤波功能,此时 Fcpu = Fosc/4 ~ Fosc/128, 并将 Watch_Dog 设置 为 "Always_On"
 - 2. 如果用户定义看门狗为"Always_On",编译器会自动开启看门狗定时器;
 - 3. 编译选项 Fcpu 仅针对外部高速时钟,在低速模式下 Fcpu =Fosc/4。

12 电性参数

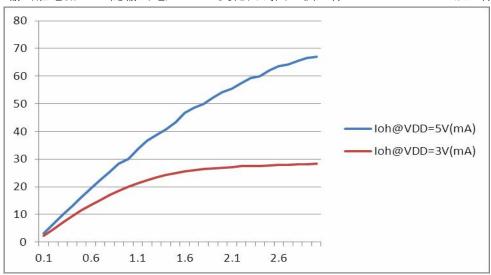
12.1 极限参数

储存温度	50℃~125℃
工作温度	40°C~85°C
电源供应压	VSS-0.3V~VSS+6.0
端口输入压	VSS-0.3V~VDD+0.3V

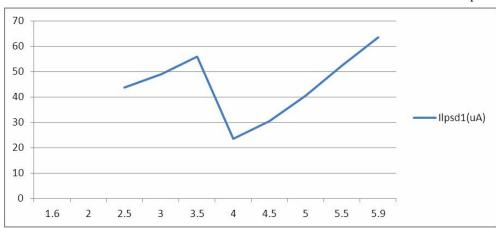
12.2 直流特性


符号	参数	测试条件		最小值	典型	最大值	单
1寸 与		VDD	条件(常温25℃)	取小阻	 值	取入阻	位
VDD	工作电压	_	Fosc = 16MHz, 4T	2.3		5.5	V
工作电流 1		3V	Fosc = 16MHz, 16T		1		mA
IDD1	IDD1		WDT 禁止,无负载,正常模式		1.6		mA
		3V	内部低频RC,3V=16K,5V=32K		50		uA
IDD2	工作电流2	5V	低速模式		40		uA
	 	3V	休眠模式,WDT 使能,无负载		3		uA
ISP1	ISP1				12		uA
	 静态电流	3V	休眠模式,WDT 禁止,无负载		_	1	uA
ISP2	H1 10 -C 10 10	5V				1	uA
VIL1	输入低电平		有施密特			0.2VDD	
VIL2	输入低电平		无施密特			0.3VDD	
VIH1	输入高电平	5V	有施密特	0.8VDD			
VIH2	输入高电平	5V	无施密特	0.7VDD			
R РН1	IOB4 上拉电阻	5V	输入到GND		90		uA
R _{PH2}	其它脚上拉电阻	5V	输入到GND		55		uA
lol	输出灌电流	5V	输出口,Vout=VSS+0.6V	_	18		mA
Іон	输出拉电流	5V	输出口,Vout=VDD-0.6V	_	19	_	mA
VREFH	参考电压输入		外部参考电压输入范围	2		VDD	V
	内部参考电压	5V	内部参考电压范围	Viref-0.1		Viref+0.1	V
VIREF	内部参考电压		内部参考电压电源范围	VIREF+0.5			V
IADC	ADC 工作电流	5V	ADC 工作电流		0.6		mA

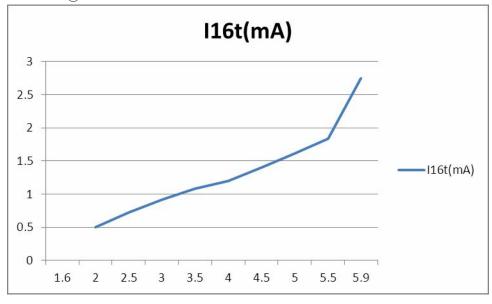
晶哲科技 改变从芯开始



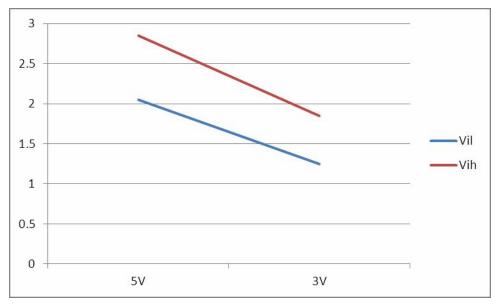
12.3 直流特性曲线

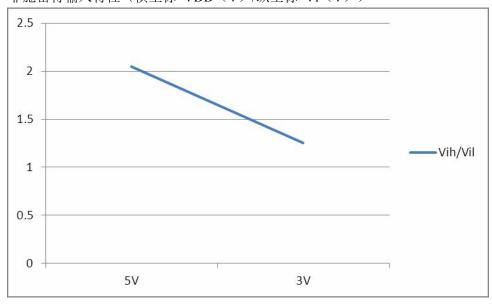

输出拉电流 Iol 随输出电压 Vol 变化曲线图 (横坐标 Vol (V)/纵坐标 Ioh (mA))

输出灌电流 Ioh 随输出电压 Voh 变化曲线图(横坐标 VDD-Voh (V)/纵坐标 Ioh (mA))



低频(LIRC)工作电流随 VDD 变化曲线图(横坐标 VDD(V)/纵坐标 Ilspd1(uA))




高频 IRC@16T 工作电流随 VDD 变化曲线图(横坐标 VDD(V)/纵坐标 I16t(mA))

施密特输入特性(横坐标 VDD(V)/纵坐标 Vi(V))

非施密特输入特性(横坐标 VDD(V)/纵坐标 Vi(V))

13 封装尺寸

产品型号	封装形式	引脚数	封装尺寸
DIP8/14/16	DIP	8/14	300mil
SOP8/14/16	SOP	8/14	150mil